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Abstract. This thesis seeks to show that new techniques in Natural 

Language Processing and Artificial Intelligence are capable of learning 

the language of law. 

 

The central task of the research involves predicting legal citations solely 

from the text of a decision. Citations from the Supreme Court of Canada 

are predicted from the decisions of the Canadian Federal Court of Appeal.  

 

This thesis proposes a new learning-based method that outperforms 

traditional static approaches used in the field.  Much improvements can 

be made, but the proposed model is capable of learning the language of 

law and appropriately predicting relevant citations.  The results from this 

research lay the groundwork for future endeavors in legal research, as the 

results show that the proposed methods can the language of law. 
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1 Introduction 

1.1 Background 

When approaching a new case, it is vital for lawyers to conduct research to examine the legal 

landscape pertaining to that case, regardless of the lawyer’s area of expertise or practice.  The law 

is heavily based on precedents, or distinguished past cases within an area of law, and lawyers will 

look for these leading cases when conducting legal research. 

Analyzing the outcomes of past precedents allows lawyers to examine how specific rules 

and standards were previously acted upon, enabling them to prepare for and make predictions 

about their current case.  If a past case is used in the development of a decision, it will be cited in 

the final decision document of that case.  By using citations, the law builds upon the legislation 

serving as the foundation for the legal system. 

Since the practice is constantly evolving, lawyers must educate themselves on the current 

state of law.  This implies, in an ideal world, reading through every relevant past decision to see 

how past decisions were made.  However, it is extremely difficult if not impossible for humans to 

efficiently read through hundreds of relevant legal cases across many legal landscapes and to 

reasonably extract information from them.  Improving the research process even marginally would 

mean significant savings in time for lawyers, thereby improving effectiveness and efficiency. 

 

 

1.2 Research Overview 

The objective of this research is to tackle the problem of retrieving relevant decisions for 

legal research, using only textual information. The intention is to design a method of prediction 

that requires no human input, so that any legal professional from any specialty within law can 

perform effective and efficient legal research in any area of law.  By the success of these 

predictions, it could be argued that Artificial Intelligence (AI) is capable of understanding or 

learning the language of law.  This result can be applied to many tasks not only limited to citation 

predictions. 

The decisions from two Canadian courts were collected.  The courts were chosen specifically 

so that the decisions from one of the courts often cites the other, which enabled the citation dataset 

to be less sparse.  The Federal Court of Appeal (FCA) and the Supreme Court of Canada (SCC) 
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were chosen strategically because the FCA frequently cites cases from the SCC, and because data 

collection was possible from these courts.  Once the decisions were downloaded, several 

preprocessing measures were taken in order to eliminate bias (i.e. removing citations and quotes 

from the FCA corpus), along with generating a truth table that housed all of the citation 

information.  These processes are thoroughly described in the Methods section. 

Upon completion of the data collection and preprocessing, an investigation of the dataset 

was conducted.  It was discovered that within the FCA corpus a correlation existed between the 

usage of citations and the use of text in the decisions. 

A baseline predictive model was built, using traditional Natural Language Processing (NLP) 

comparison methods.  This static model was compared to the deep learning models developed, 

which were trained on learned Doc2Vec embeddings of the FCA and SCC corpora.  The deep 

learning models outperformed the baseline model significantly for the top 1 and 5 predictions, an 

important result in this research.  The baseline achieved an F1 score of 0.164 for the top 5 

predictions, while the final deep learning model achieved 0.632 on the training set and 0.217 on 

the test set.  This is a 32% improvement from the test set relative to the baseline.  A deeper 

investigation also showed that the deep learning models are interpreting intricacies of the language 

used, a positive finding of this research. 

The proposed models have limitations.  There is a notable difference between training and 

test results, which can signify memorization of the data or problems with the collected data.  Upon 

further review, it appears that the data is limiting the generalization ability of the models.  This 

could be improved if more data is collected or through data augmentation. Nonetheless, the 

proposed models significantly outperform the baseline model on the test data, a static model that 

does not consider language context and is static.  This result illustrates that the proposed AI 

architecture can learn the language of law, the initial hypothesis of the research. 

 

 

1.3 Current Landscape 

Many challenges impede this research and future work in this field, including learning the 

intricacies of the English language and its syntax, and understanding its use within legal 

documents.  Recent advances in NLP and AI across different fields make a compelling argument 

for the case that AI will one day be capable of “understanding” the language of the law and the 
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structure of legal arguments [1].  The field has recently begun to use the newly developed 

mechanisms in NLP, as outlined in the literature review.  However, there still exists a significant 

gap between the use of NLP within textual analysis in law, and the predictions of relevant legal 

research or citations.  Bridging this gap between the field of NLP, textual analysis and citation 

analysis in law is the primary focus of this research project.  The success of this project will lay 

the foundation for future endeavors between AI and law. 

In the industry, companies like Blue J Legal [2], Westlaw [3], ROSS Intelligence [4], 

Bloomberg Law [5], and LexisNexis [6] are focusing on predicting relevant cases for research 

purposes.  However, they require manual inputs to make predictions.  They assume that the user 

has some knowledge of the case, and more importantly has knowledge of that particular field of 

law; enough to be able to enter an appropriate query.  This paper, on the other hand, proposes 

that a dependence on user input is not required in order to make reasonable predictions, and it 

may even eliminate the bias inherent in current citation use (see literature review). 

 

 

2 Literature Review 

The landscape of research in law is quite vast.  Significant work has been done to investigate 

the way in which language is used within legal texts, producing some sort of empirical and 

quantitative results.  Another portion of research within law, although much less substantive, 

involves the investigation and use of citations, also referred to as the field of citation analysis.  

Nonetheless, these areas are still small in comparison to the whole research umbrella. 

Upon a literature review, it appears that textual analysis within law has recently started to 

employ Natural Language Processing (NLP) and Artificial Intelligence (AI) learning methods.  In 

addition, researchers are introducing supplemental information (i.e. citations) to aid the training of 

the text-based learning methods. Yet, there still exists a significant gap between the use of NLP in 

other fields and its use in law (as displayed in Figure 1 below).  The purpose of this work is to take 

a significant step forwards in the integration of NLP with law, and to outline a roadmap in which 

future work can be developed. 
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Figure 1: Representation of the existing gap between textual analysis in law, citation analysis, and NLP. 

 

 

 

2.1 Natural Language Processing (NLP) 

The term Natural Language Processing (NLP) refers to a very broad array of linguistic 

studies, typically but not limited to the study of the English language [7].  Each area within NLP 

is concerned with extracting information from text or speech in some capacity, and in some cases 

making predictions based on the information extracted.  This section will outline some of the 

many applications of NLP research, how NLP is used to represent text on computers, and how 

these representations are used to extract information and group similar documents. 

 

2.1.1 The Wide-Reaching Applications of NLP 

A significant portion of NLP research is concerned with syntax.  Some examples include: 

part-of-speech tagging (determining the part of speech for each word in a sentence); stemming 

and lemmatization (breaking down words into their roots); and parsing (analyzing the grammar 

within each sentence).  Another major component of NLP focuses on the semantics of languages.  

Some tasks within this include: sentiment analysis (examining the polarity of text); topic 
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segmentation (identifying the dominant topics within a piece of writing); and distributional 

semantics (learning semantic representations from text).  A third component to NLP research is 

devoted to the study of discourse.  Tasks include: summarizing text (reading through a piece of 

writing and highlighting important sentences); coreference resolution (determining 

commonalities between what texts mention); and general discourse analysis (looking at the 

relationships between sentences). 

These are only some of the tasks currently being studied within NLP.  This research is very 

extensive, and its applications reach many different fields.  For instance, Bharadwaj and Shao 

used the text from 6,256 articles to classify whether or not that news was fake.  They compared 

three different models (a recurrent neural network, a naïve bayes classifier, and a random forest 

classifier), and their best model was able to achieve an accuracy of 95.66% using only text [8].  

Another interesting application of NLP is its use in predicting future stock prices.  Mehtab and 

Sen developed a technique that exploited long short-term memory (LSTM) models to make 

predictions, in combination with a sentiment analysis of Twitter [9].  They found that the 

traditional predictive models performed better in combination with the NLP Twitter sentiment 

analysis.  These are only some of the many different applications of NLP research, and it looks 

as though there will be many more in the future. 

 

2.1.2 Representations of Text 

The main obstacle with textual analysis is representing text appropriately.  Many options 

currently exist, each with their own advantages and disadvantages.  Textual representation is 

heavily application dependent, and this section will primarily focus on the leading methods used 

when making textual comparisons or analyzing textual similarities as this research project sets out 

to achieve. 

A portion of textual representations fall under the umbrella of what is referred to as “bag-of-

words” approaches.  This refers to representations that do not consider the context in which words 

are used within a document, but only the frequency at which they are used [10].  In this way, all 

of the words collected from a document are organized into a vector, with each entry representing 

the term frequency (tf).  For instance, the sentence “The quick brown fox jumps over the lazy dog” 

will have the tf vector shown in Figure 2. 
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Figure 2: Example of a term frequency (tf) vector for the sentence “The quick brown fox jumps over the 

lazy dog”. 

the quick brown fox jumps over lazy dog 

2 1 1 1 1 1 1 1 

 

 

This is the simplest way to represent text, and is prone to many errors since it is ignorant to 

the context of words.  For instance, these vectors would have higher frequencies of common words 

like “the”, “as”, and “it”.  These words are referred to as “stop words”, and often introduce noise 

within textual analyses. 

To work around this, the concept of inverse document frequency (idf) is used.  Across a 

corpus of documents, each term is searched and counted, and their idf score is the inverse of this 

total.  For words that are common within the corpus (i.e. stop words), the idf is really low, and 

words that are very rare will be higher.  Typically, the two measures are combined logarithmically 

to produce a more complete form for each document in a corpus, called term frequency inverse 

document frequency (tf-idf).  Although there are more advanced and effective techniques as 

described below, Shahmirzadi et al. have found that tf-idf can perform well under certain 

conditions [11]. 

There are newer approaches to modelling text, aside from the traditional methods discussed 

above.  They are known as “word embeddings”, and are learning-based approaches to the problem 

of representing text discussed above [12].   The advantage of word embeddings is that they are 

dense, and have been shown to be more effective than traditional methods.  There are a variety of 

ways to generate these embeddings, including neural networks, probabilistic models, and 

dimensionality reduction techniques. 

Word2Vec is a commonly used method that uses a two-layer feedforward linear neural 

network to compute word embeddings.  This method was proposed by Mikolov et al. in 2013 [13].  

FastText is an open source project that has pretrained models for English representations that is 

frequently used [14].  ELMo is a recently published technique (2017) developed by Peters et al. 

that focuses on the modelling the complex use of words, and how these uses vary across linguistic 

contexts [15].  GloVe is an unsupervised learning method developed by Pennington et al., and is 

also considered a staple within the field [16].  Grzegorczyk provides a more detailed summary of 

all of these techniques, along with a few more recent methods [17]. 
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In short, there are a multitude of methods that are currently being employed to learn word 

embeddings within the field.  An example encountered in this literature review applies the 

Word2Vec learning approach to 10-K financial filings.  Using 10-K filings collected from the 

S.E.C. between 1993 and 2018, Sehrawat was able to learn word embeddings particular to that 

application [18].  Similarly, Ali et al. decided to learn word embeddings for the Sindhi language, 

since there had been no previous work done on the language.  They showed that it was possible to 

learn word embeddings even on an entirely different language, using the GloVe, Skip-Gram (SG), 

and Word2Vec algorithms [19].  These examples show us that it is possible to successfully use 

and implement the word embedding algorithms discussed above. 

Unfortunately, it is not clear which method performs better.  Each method’s performance is 

highly dependent on the corpus and application.  In this research project, each of the methods 

above will be consulted and tested in different capacities. 

 

2.1.3 Text Similarity using Word Embeddings 

As described in the previous section, it is possible to compare documents within large 

corpora and group documents by similarity.  This is an important task across many different fields, 

and there are many examples of its use across different fields. 

In a recent publication, Steier used NLP to analyze various aspects of Dante Alighieri’s 

famous work “La Divina Commedia”, or “The Divine Comedy”.  Particularly, Steier applied 

textual similarity to compare “The Divine Comedy” to a variety of Shakespeare’s plays, and found 

that the section “Paradise” was similar in text to Shakespeare’s sonnets [20].  This example is 

interesting because it highlights the wide-reaching applications of these methods.  In another 

interesting application, Saedi and Dras used similarity-based approaches to identify the author of 

blog posts.  They used Siamese networks, a complex set of Convolutional Neural Networks 

(CNNs) along with a new word embedding approach called BERT, and confirmed that their system 

was able to learn a general notion of authorship simply by analyzing text [21].  Another recent 

example displays how this research is being applied in the medical industry.  Dobrakowski et al. 

approached the question: “Is it true that patients with similar conditions get similar diagnoses?”.  

By using GloVe to compute word embeddings on a corpus of about 100,000 clinical records, they 

were able to group and visualize terms based on the embeddings generated [22].  They also were 
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able to find what were the top-5 most recommended treatments by the doctors, for a certain subset 

of medical disciplines. 

The examples discussed above show how word embeddings are being employed to measure 

textual similarity and extract insights in many fields.  Many fields across many different domains 

have used these tools successfully, and highlight that when used properly, these successes can 

propagate to the specialty of law. 

 

 

2.2 Textual Analysis in Law 

This section will briefly discuss the history of textual analysis in legal research, and examine 

the increased use of NLP to encode documents, which has become a recent trend in the research. 

 

2.2.1 Empirical Analyses of Legal Texts 

In the infancy of textual analysis in law, researchers were primarily focused on investigating 

how language was used.  In 1980, Danet produced “Language in the Legal Process” that 

empirically analyzed argumentation used across many cases, and reasoned that language is used 

in many ways, including as an argumentation style (a concept referred to as “thickening”) [23].  

Other publications performed similar empirical analyses of legal text, such as Goodrich’s “Law 

and Language: An Historical and Critical Introduction” in 1984 [24], and Fairclough’s “Discourse 

and Text: Linguistic and Intertextual Analysis within Discourse Analysis” in 1992 [25].  These 

were some of the early investigations into textual analysis within law. 

More recently, the research conducted on legal texts has pivoted to use statistical methods 

to make inferences about the language within a dataset.  In 2014, Fagan applied a naïve Bayes 

classifier to analyze legal texts, and predict if they were relevant or not.  This study used 2,111 

opinions, and the correct labels for each of these were generated manually by humans.  With a 

standard Porter stemmer, removing stop words, using two-word phrases (“bigrams”) and ten-fold 

cross validation, the classifier achieved an accuracy of 78.38% [26].  Using the bigrams, Fagan 

could visualize what words associated well with different labels (that were generated manually).  

Similarly, Macey and Mitts used co-occurrence to analyze the similarities of documents with 

bigrams, and used a naïve Bayes classifier to show how public policy is systematically piercing 

the “corporate veil” [27].  In this study, they analyzed the bigrams that were most associated with 
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each category (i.e. “Bankruptcy values”, “Undercapitalization”), and were able to explain how 

judicial opinions were formed from the bigrams.  In 2014, Kosnik used a regression model (a “bag-

of-words” approach, like the examples described above) to examine contract completeness.  

Specifically, hydroelectric licenses were examined from 1997-2007, and found that the word 

choice did not vary much over time [28].  Again, this example demonstrates how textual analysis 

(at the time) was mainly used to support empirical studies.  As Kosnik wrote, “textual analysis in 

the law and economics literature is still very much in its infancy”.  Often, however, statistical 

methods do not generalize well to new data, and the methods described above required manually 

generated inputs.  It was not until a few years later that more advanced NLP methods infiltrated 

the textual analysis space in law, which will be discussed in the following section. 

 

2.2.2 Using NLP for Legal Textual Analysis 

Over the last few years, NLP has been more readily implemented in legal textual analysis.  

In 2016, Nay proposed a completely new method for encoding text with the specific application 

of legal texts, building upon some of the methods described in the previous section.  The major 

change within this encoding allows for a more rigorous legal analysis, specifically because 

Gov2vec is able to discern meaningful differences between government branches (i.e. different 

Presidents or Congresses) [29].  This may have pretty important repercussions for this research 

project, because it allows the researcher to investigate questions like “How does Obama differ in 

addressing climate change, and how does it differ from leading environmental perspectives?”.  In 

2018, Ash and Chen applied document embeddings to law, with the specific goal of 

understanding judicial reasoning and how judges are related.  Specifically, they use the Doc2Vec 

embedding, along with citations that inform their analysis, a method proposed by Le and 

Mikolov in 2014 [30].  The extension of NLP and citation analysis in this context is directly 

related to the task at hand.  In this study, they found that “as with word embeddings, cases that 

tend to be cited together locate near each other in the embedding space” [31].  In other words, 

they found that word embeddings and citation similarities are positively correlated, a finding that 

strengthens the central hypothesis of the research project. 

In a recent publication from 2018, Bommarito et al. describe an open source project 

dedicated to making NLP more accessible to legal texts.  Specifically, the package can segment 

documents, identify key text (i.e. titles, headings), extract structured information, transform text 
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to features and word encodings, and build supervised and unsupervised models [32].  These 

examples show how textual analysis research has evolved over the last few years, and where the 

field is trending in the future.  However, there is still much work to do, and the gap is still 

significant.  As Robaldo et al. note, “recent research has highlighted the need to create a bridge 

between conceptual questions, such as the role of legal interpretation in mining and reasoning, as 

well as computational and engineering challenges, such as the handling of big legal data” [33]. 

 

 

2.3 Citation Analysis in Law 

In Canada, along with many other legal landscapes, the legal system is based on a 

combination of legislation (or “civil law”) and precedent (or “case law”)  [34].  Civil law 

describes a set of rules and legislations that focus on general principles.  On the other hand, case 

law describes rulings that deal with the intricacies and peculiarities of different legislations.  

However, case law is not explicitly written as a rule or legislation.  Rather, it describes the way 

in which past judicial decisions are used to set precedents for future decisions.  Judges cite past 

cases that help inform a new decision, and in this way, the law evolves over time. 

A small subset of legal research is devoted to the study of these citations, also known as 

the field of “citation analysis”.  This field draws directly from the concept of case law, and how 

the law builds upon itself through the use of citations to support or dispute an argument.  Citation 

analysis has existed since the 1990s, and has evolved over time.  For a while, citation analysis 

was mainly used to gather empirical results and to test central hypotheses, as Posner describes 

[35].   

In the 2000s and afterwards, a majority of the work involving citation analysis included 

some form of statistical analysis to extract different quantitative insights.  Clark & Lauderdale 

asserted that citations provide a useful source of information about an opinion’s doctrinal 

location.  To test this, they trained a standard Bayesian ideal point estimator to locate opinions 

across the citation space, and Markov chain Monte Carlo methods to calculate the posterior 

distributions [36].  The statistical nature of the point estimator lead to some fundamental flaws, 

particularly since the calculated prior did not generalize well to other citations.  Ződi holistically 

analyzed the citation patterns from a corpus of 61,512 Hungarian decisions.  Using a basic 

statistical analysis of the citations used in the corpus, Ződi found that different branches of 
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Hungarian courts cited cases in distinguishable patterns [37].  In addition, he found that with a 

simple statistical approach, precedent cases could be found without actually reading the 

documents.  Similar statistical analyses have been applied to the study of judicial biases within 

citations, such as with Choi & Gulati.  By analyzing a dataset over the course of a year, they 

were able to support three central hypotheses surrounding bias in judicial citations: judges cite 

from the same political party; judges are more likely to be biased in stressful or high stakes 

situations; and judges are more inclined to cite judges who also cite them [38].  Using basic 

statistics and analytical approaches, these studies were able to extract meaningful empirical and 

qualitative results.  However, statistical methods are severely limited in their ability to adapt, and 

their performance is highly dependent on the corpus gathered. 

Network analysis also comprises a large portion of the methods within citation analysis.  

Fundamentally, a corpus of cases can be abstracted as a network of citations, where cases are the 

edges and citations are the nodes.  This metaphor is very useful when analyzing citations.  By 

applying basic concepts of network science to citations, Smith found that within a corpus of over 

5 million U.S. Supreme Court cases, only about 0.3% of them were cited 500 or more times [39].  

In the paper, Smith asserted that due to the findings, it can appropriately be concluded that 

precedential authority relies within a very small portion of the case space.  In other words, there 

are a few cases that are cited frequently, which is directly tied to the concept of case law.  This 

behavior is typically seen in other networks (such as the Web or social networks), and may be 

important to note while experimenting with citations.  Similarly, Derlén & Lindholm applied 

HubRank and PageRank (two well-known network science algorithms) to the study of centrality 

within a network of 8,891 CJEU (Court of Justice of the European Union) decisions.  They found 

that the PageRank algorithm generally performed best for the purpose of measuring “authority 

score”, but it is not clear when measured against other metrics [40].  A similar analysis was 

applied to investigate whether or not U.S. Supreme Court cases influenced U.S. Supreme Court 

IP (Intellectual Property) cases.  Statistical methods were applied to view holistic trends, but 

Smith looked at the in and out degree for each case in the collected network, along with the 

“authority score” of each case [41].  There are many insights that can be gathered from this sort 

of analysis, which is why a considerable portion of research into legal citations involves some 

sort of network analysis. 
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There seems to be a recent shift in the use and analysis of citations in legal research.  Over 

the last few years, citation analysis has started being employed primarily as a supplemental tool 

in other research.  For instance, in 2001 Conrad and Dabney used many of the concepts 

described in this research project to generate citation predictions.  However, they employ a rule-

based logistic regression ranking model, of which one-third of the rules were manually generated 

from editors [42].  This important publication laid the groundwork for future research to come.  

In a similar manner, Livermore et al. have used a combination of citation analysis and manually-

derived relevance scores to measure the efficacy of different algorithms in law search.  Using 

9,575 U.S. Supreme Court decisions, they used citation similarity scores and the manually-

derived scores to test two different search algorithms and a reinforcement learning model [43].  

They found that the reinforcement learning model performed the best using the citation similarity 

metrics and the manually-derived scores made by lawyers.  However, Livermore et al. use a 

basic textual analysis techniques that takes only term frequencies into account.  They concede 

that law search has been “left almost entirely undiscussed” and present several ways to improve 

their methods.  In a recent work produced in 2019, Medvedeva et al. used dynamic machine 

learning methods to classify decisions from the European Court of Human Rights.  Interestingly, 

they incorporated information about the judges behind each decision and the citations used into 

their models, and this produced the best results [44].  They, like Livermore et al., used a “bag-of-

words” analysis to compare texts, and agree that more advanced Natural Language Processing 

methods – that consider the position and context of words – may yield better results. 

One central theme is consistent in these new research studies; there exists a clear gap 

within the areas of legal research between textual analysis and citation analysis.  As discussed 

above, recent research has shown that the marriage of artificial intelligence and machine learning 

with law and citation analysis can be successful.  In fact, this freedom of human input may help 

produce predictions that are devoid of the inherent bias behind citation use uncovered in the 

literature review [37] [38] [39]. 
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3 Methods 

3.1 Data Collection and Cleaning 

A significant portion of this project dealt with data collection and preprocessing.  The 

intention of the section is to thoroughly explain each method used in the collection and 

preprocessing of the data, along with the reasoning behind why each court was chosen. 

 

3.1.1 Court Selection 

The task of predicting citations using text was quite complicated, and meant that several 

pieces of information had to be collected.  Two courts had to be selected strategically so that one 

frequently cited the other (to avoid a sparse prediction space), and the decisions from each court 

had to be downloaded.  Two Canadian courts that fit the criteria were the Federal Court of Appeal 

(FCA) and the Supreme Court of Canada (SCC), where the FCA cites cases from the SCC 

frequently and both datasets are available online.  Once the textual documents were collected, 

citation information had to be collected as well. 

 

3.1.2 Collecting Decision Data 

Permission to download the data for the sole purpose of education and research falls under 

the Reproduction of Federal Law Order passed in 1997, so long as it is not redistributed and altered 

in any way [45].  Under this direction, data was manually downloaded from the FCA website as 

pdfs. 

Fortunately, a partnership was made with the Canadian Legal Information Institute (CanLII), 

a private company that securely houses decisions from a wide range of Canadian courts.  Under 

this partnership, CanLII provided all SCC decisions, as well as access to contextual information 

(i.e. citation information, case numbers, etc.) through an API key.  Python code was written to 

collect case titles, citation id’s, and a list of all citations to and from the SCC using the API key.   

The partnership with CanLII was made under the approval from the SCC.  Throughout the 

research project, the data was securely stored remotely, and will be deleted once the project is 

terminated.  The same follows with the FCA data, as many precautionary steps were taken 

throughout the project to maintain the security of this sensitive data. 
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3.1.3 Preprocessing the Decision Data 

The FCA decision corpus was downloaded in pdf format, while the SCC decision corpus 

was downloaded in HTML format.  Tika, a Python library designed to extract text from many 

different file formats [46], was used to extract the text from each file within each court.  Once the 

text was extracted, text files were saved (with the .txt file format).  It became much easier to 

perform textual analysis on the downloaded decisions once they were converted to this format, and 

it became much easier to clean and preprocess the text of each decision as well.  It is important to 

note that these libraries are not perfect, and could introduce external error in the analysis.  

However, this is a known limitation, as the original text formats could not be used.  

The next significant phase of preprocessing dealt with eliminating all potential bias from the 

textual information of each court.  This step is crucial, since analyzing the predictive power of the 

methods used could be directly affected by inherent bias within the dataset.  Bias in this context 

implies anything that could be interpreted by a model that would improve performance or 

predictive power, which would ultimately detract from the results and conclusions reached.  For 

instance, one direct source of bias could result from leaving citations in the texts.  Depending on 

the method used for predictions, it is feasible that something could learn to make predictions by 

searching for the citations within the document.  The objective of this project is to test whether or 

not AI can learn the language of the law and make predictions, so eliminating these citations was 

necessary in terms of maintaining the validity of the results. 

Aside from removing citations, many other considerations were involved in the text 

preprocessing.  This includes: 

1. removing case names and titles (i.e. Canada v. Canada), 

2. removing all numbers (including dates, page numbers, paragraph numbers), 

3. removing all special characters (specifically converting everything to ASCII since 

some of the names were in French),  

4. removing the words “SCC” and “SCR” (which refers to the Supreme Court of 

Canada) or any variation of these words such as “S.C.C.” or “S.C.R.”, 
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5. removing all punctuation (task dependent1), and  

6. removing all quotes2. 

These are aggressive measures, but they were taken so that the results truly reflect what can 

be gained from different analyses.  It is important to note that the citations and quotes were only 

removed from the FCA corpus but not from the SCC corpus, since it may have had an adverse 

effect by removing too much information.  This could have introduced some bias, a limitation of 

the data preprocessing methods used.  It could also be argued that too much information was 

removed from the texts (like punctuation and paragraph information), and these are known 

limitations of the preprocessing methods used. 

 

3.1.4 Citation Collection 

Another significant portion of the data preprocessing pipeline involved extracting the 

citation information, and reformatting it into a workable form.  Fortunately, the API provided by 

CanLII allowed for a relatively easy downloading of all information for citations from and into 

SCC decisions.  A Python script was written to make API calls as necessary, and download all of 

the citations to each SCC case. Using this information, all of the downloaded FCA cases were 

searched for, and this citation information was stored in a truth table. 

The truth table was constructed with the FCA decisions as the rows, and the SCC decisions 

as columns.  Each element ei,j (in row i  and column j) is represented as a 1 if case i cited case j, 

and represented as a 0 otherwise.  Figure 3 below is a representation of how the truth tables were 

constructed. 

 

 

 

 

 

 

 

1 Removing punctuation is necessary for some tasks in this research, but not all.  In tasks where 

words sentence structure was important (i.e. training Doc2Vec embeddings for the dataset), 

sentence and paragraph structure was maintained. 

2 It was found later in the project that removing quotes had no effect on results, and these were 

added back into the texts. 
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Figure 3: Fictional representation of what the truth table looks like (rows are cases from the downloaded 

FCA corpus, and the columns are various SCC citations in this example). 

 2009scc23 2018scc10 2006scc05 … 1980scc03 

  2013fca02 1 0 1  1 

  2015fca104 0 0 0  1 

  2019fca09 0 1 0  0 

   . 

. 

. 

  

  2018fca83 1 0 1  1 

 

 

The truth table was a convenient way to store the data because it offered a simple lookup for 

predictions.  As the data needs changed throughout the project, several truth tables were 

constructed.  These were all developed using the methods described here. 

 

 

3.2 Measuring Citation Similarity 

For a few different subtasks in the project, investigating the similarity of how cases cite was 

desired.  Particularly, this was measured using a metric known as “cosine distance”.  Cosine 

distance considers each case as a vector in the citation space, and effectively finds the case (vector) 

with the smallest cosine distance, or most similar angle in the n-dimensional space.  A 

mathematical representation of this metric is shown below3: 

 

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos(𝜃) =
𝐴 ∙ 𝐵

‖𝐴‖‖𝐵‖
 

 

 

 

 

 

 

3 A and B are vectors, which in this context represent the citation information from decisions in 

the corpus.  
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By calculating the scores for each possible pair of cases, the most similar decisions can be 

found for a given case.  In fact, this method was also used in the baseline predictive model to 

gather decisions based on textual similarity (more details below). 

The only disadvantage of using this metric to score vectors is that it does not consider 

Euclidean distance, or how far vectors actually are in the citation space.  In theory, there could be 

two vectors that have the same cosine angle in the vector space, but are extremely far apart (i.e. 

(1, 1) and (1000, 1000) in ℝ2).  Practically however, at least in this context, this is irrelevant.  

There are only two acceptable values in each dimension of the citation space (0 or 1), meaning that 

any two vectors with the same angle will always have the same norm.  Therefore, citation similarity 

is an acceptable metric for this purpose. 

For the citation similarity analysis conducted, the top K predictions (by citation similarity) 

were analyzed, where K is a chosen parameter.  For instance, in the fictitious truth table represented 

in Figure 4 below, the top K similar documents for the decision 2013fca02 is the case 2018fca83 

(where K = 1 in this case). 

 

Figure 4: Fictional representation of a truth table built for citation analysis (the highlighted rows depict 

the top-K most similar decisions to 2013fca02, where K = 1). 

 2009scc23 2018scc10 2006scc05 … 1980scc03 

  2013fca02 1 0 1  1 

  2015fca104 0 0 0  1 

  2019fca09 0 1 0  0 

   . 

. 

. 

  

  2018fca83 1 0 1  1 

 

 

3.3 Predicting Citations 

With the data properly preprocessed and cleaned, the main task of predicting citations could 

be addressed.  This section thoroughly describes the methods used in each of the models made, 

including the baseline and learning-based models. 
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3.3.1 Scoring Metrics 

The central task of this research is predicting legal citations using only the texts of the 

original decision, which is known as an “information retrieval” task within the NLP landscape 

[47].  Information retrieval typically deals with queries instead of full documents, for instance 

search engines like Google retrieve websites based on an inputted query. 

The research presented here was specifically crafted to remove the human aspect associated 

with the retrieval, specifically in the query.  However, the same scoring metrics can still be applied, 

to measure the true performance of developed models.  There are many, but the most common 

ranking metrics are known as “recall” and “precision”. 

Recall refers to the percentage of relevant documents that were returned in the predictions, 

of all the relevant documents in the corpus.  A mathematical representation of this metric is shown 

below: 

𝑟𝑒𝑐𝑎𝑙𝑙 =
# 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

 

Recall was scored for each FCA decision, and averaged across the corpus.  The averages are 

presented in the results of each model.  Also, within each FCA decision, a different number of 

predictions were returned.  The number of predictions is referred to as K.  As K increases, the 

number of predictions increases, which inflates the recall values, since the expected value of 

correct predictions increases.  As a result, the expected value was documented for each prediction, 

and the net average recall was calculated by taking the difference between the average recall and 

expected value.  The net average recall measure is more indicative of true performance.  

Precision is a measure that aims to look at the accuracy of each prediction.  Precision@K is 

a specific measure of precision, for K predictions.   A mathematical representation of this metric 

is shown below: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 =
# 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐾
 

 

One flaw with this measure is that for sparse datasets such as this one, the precision 

drastically decreases as K increases.  This has little relevance, because predictions are not practical 

for large K.  The ideal predictive model is very precise at small K, and has strong recall at small 
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K.  However, as discussed in the data analysis, recall is low for K=1, since the average number of 

citations is about 4 per FCA decision.  This means that for K=1, perfect recall would be about 0.25.  

For this reason, the precision and recall results for K=5 were more closely monitored. 

Finally, since both of these metrics are important, it is also useful to gather a weighted sum 

of these measures.  The F1 score is a weighted sum of recall and precision, and for this context 

was measured at each value of K.  A mathematical representation is shown below: 

 

𝐹1 = 2 ∙
(𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾) ∙ (𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑒𝑐𝑎𝑙𝑙)

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 + 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

This measure is often used in information retrieval, and is a good summary of how the model 

performs on the dataset for given values of K. 

The main limitation with these measures is that they assume relevant documents for a given 

corpus are known beforehand.  In this context, this research assumes that the citations are relevant 

documents.  This assumption may pose problems for the results, since the citations within legal 

research have been shown to contain a significant amount of bias [37] [38] [39].  Also, it assumes 

that the authors of each FCA decision in the corpus read every possible SCC decision and made 

logical citations. 

There are notable limitations of using citations as relevancy feedback, but anything else 

would require significant amounts of time.  In an ideal world, a team of legal professionals would 

have to read and take notes on every case within the FCA and SCC corpora, and then choose 

relevant documents.  The choices of each professional would then have to be cross-referenced 

against each other, to eliminate all bias.  This would not only take an extraordinary amount of time, 

well beyond the scope of this project, and would not eliminate all bias because “relevancy” in this 

context is a vague concept.  As a result, citations should be a good approximation for relevancy. 

 

3.3.2 Baseline Predictive Model 

The baseline model was the first model built.  The motivation behind building this model 

was to provide a reference when evaluating other models.  This was necessary since the literature 

review found no projects of this nature in legal research.  This method had to be simple, so that 

any proposed model should in theory perform at least as good as the baseline.  
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The proposed baseline model used a static “bag-of-words” method known as “tf-idf”.  It uses 

a combination of term frequency and inverse document frequency to represent documents.  It 

measures the frequency at which each document in a corpus uses words within the whole corpus.  

This method was chosen because it has been a standard in the field of Natural Language Processing 

(NLP) for quite some time, and since the literature review showed that this method is useful and 

sometimes as good as learning-based methods [11]. 

In addition, this method was specifically chosen because of its flaws.  Representations for 

each document are only computed by analyzing word frequencies.  This leaves significant room 

for error, as it does not consider the contextual meaning of words in the English language. 

An example of this deficiency is show in Table 1 below. The example consists of two 

sentences, each of which is compared to the test sentence “The quick brown fox jumps over the 

lazy dog” using the cosine distance of their tf-idf representations. 

 

Table 1: An example of sentence comparison using cosine distance with tf-idf document representations. 

Sentence Cosine similarity (using tf-idf) 

“This is a fast pet” 0 

“The dog is friendly” 0.35 

 

 

As shown above, “This is a fast pet” shares no words in common with “The quick brown fox 

jumps over the lazy dog”, and therefore they have a similarity score of 0.  “The dog is friendly” 

has two words in common with “The quick brown fox jumps over the lazy dog”, and therefore 

received a distance score of 0.35.  In this example, “This is a fast pet” is semantically closer to the 

test sentence, even though they do not share any common words.  As a result, tf-idf fails to identify 

this, since it cannot uncover the meaning of each sentence.  This is a major flaw with “bag-of-

words” approaches like tf-idf, as discussed in the literature review. 

To make predictions in the baseline model, a tf-idf vector was created for each document, 

and the similarity between each document was computed using cosine distance.  In this way, 

similarities between two legal texts are computed and compared throughout the entirety of the 

corpus. Once the similarity scores are computed, the documents are ordered by this similarity 

score, and the top K documents are returned (shown in Figure 5, where K = 1). 
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Figure 5: A representation of the textual analysis performed using tf-idf and cosine similarity scores. 

 

 

 

The top K most similar documents are predicted for each FCA case.  Key scoring metrics 

are calculated, as described in the previous section.  These measures are then averaged over the 

entire FCA corpus, and presented in the Results section.  The tf-idf representations are developed 

from the Python package TfidfVectorizer from package sklearn.feature_extraction.text [48].  The 

cosine distance scores are calculated using the cosine_similarity Python package from the 

sklearn.metrics.pairwise library [49].  These are both open source libraries offered in Python. 

 

3.3.3 Learning Document Embeddings 

Tf-idf is a method learning document representations, as described above, but there are much 

newer techniques in the field of NLP.  Word2Vec was the method that truly changed the field in 
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2013, that learns embeddings for a set of words [13].  One year later, Doc2Vec was proposed as 

an extension of Word2Vec, for learning embeddings for documents and paragraphs within a 

corpus.  GloVe and ELMo are more recently developed techniques that built upon these 

foundational teehniques [15] [16].  Each of these methods, along with others, are described in 

detail in the literature review. 

There are many techniques within the field that are currently in use, and it is not quite clear 

which is better as they are task dependent.  A great deal of research has been done in many 

applications, showing that it is possible to learn embeddings effectively for different tasks such as 

10-K filings [18], or for an entirely different language [19].  These examples show us that it is 

possible to successfully use and implement the word embedding algorithms discussed above. 

When approaching this task, two main avenues were explored.  One option involved using 

pre-trained embeddings, which is fairly common.  The advantage of this is that these embeddings 

are thoroughly trained on a corpus much larger than the one in this research project.  The 

disadvantage of using pre-trained embeddings is that the learned embeddings are not specific to 

legal texts.  It was decided to train embeddings specifically for this corpus as a result.  This decision 

was made in part from the observed success in the literature review (as described above as well), 

but may be a source of limitations in the results. 

The Doc2Vec method was chosen to learn the embeddings for this task.  This method was 

chosen because of the success demonstrated from the research of Ash and Chen in 2018, within 

the legal landscape [31].  In a corpus similar to that of this research project, they found that they 

“tend to be cited together locate near each other in the embedding space”.  The learned document 

embeddings were strongly correlated with the use of citations in their corpus, which was desirable 

in this project.  Also, this method was easily implemented in Python through the gensim library, 

which also factored into the decision process [50]. 

Ash and Chen built the document embeddings with the distributed bag-of-words model, 

which samples words from a context window at random and learns the use of text without any 

context.  This made more sense for their task, but ultimately this research chose to use the 

distributed memory model, since a bag-of-words approach was used in the baseline model.  The 

distributed memory model maintains the order of each sentence, and the context of each word 

within a sentence is maintained.  There are advantages and disadvantages to each learning model 
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within Doc2Vec, but the distributed memory model was chosen because of its ability to learn the 

semantic and contextual meanings of words within a corpus. 

There are a few other parameters involved as well, including window size, embedding size, 

learning rate, and number of epochs (or passes through the data).  Ash and Chen did not explicitly 

state all of the parameters they used, but mentioned an embedding size of 200 that trained for 5 

epochs.  To uncover which parameters to use, research conducted by Lau and Baldwin was 

consulted, which tested various hyper-parameters and make recommendations for them [51].  For 

the distributed memory mode, they used an embedding size of 300, a window size of 5, a learning 

rate of 0.025 with decay, and trained for up to 1000 epochs depending on the application.  In 

accordance with their findings, the same window size and learning rate (𝛼) was used.  Different 

embedding sizes and number of epochs were used however, due to the computational complexity 

associated.  Embedding sizes of 250 and 1000 were chosen, but only trained for 100 and 10 epochs 

respectively.  Two embedding sizes were chosen to examine the effects on learning.  It should be 

acknowledged that this is a limitation of the learned embeddings, but still are more complex than 

what was used by Ash and Chen, and therefore are good enough for the task. 

There are obvious limitations in the methods used to train the embeddings.  Of course, pre-

trained embeddings should have been consulted, and future projects should definitely explore this.  

Also, methods other than Doc2Vec should be explored, to examine the effects on performance.  

There is much room for optimization in the tuning of the hyper-parameters used, including training 

the embeddings for more epochs.  This should all be considered when viewing the results of each 

model’s performance.  

 

3.3.4 Deep Learning Models 

This research is concerned with showing that Artificial Intelligence models can learn the 

language of the law.  Deep Learning, a subset of Artificial Intelligence, was used to learn how to 

predict citations given the text of a bias-free legal decision.  As described in the literature review, 

these techniques are not currently used in the field.  The models built and developed for this task 

are all referenced to models seen in the literature review of other fields.  

Two distinct models were developed in this research, each serving a distinct need.  Both 

models were trained using the trained Doc2Vec embeddings thoroughly described in the previous 

section.  This process of layering models together is common in NLP research. 
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The first model is known as a Multilayer Perceptron (MLP), but also referred to as a “vanilla” 

neural network because it is the most basic design available [52].  The designed MLP consisted of 

3 layers; an input layer, hidden layer, and output layer.  This specific model was used because 

under the “Universal Approximation Theorem”, an MLP with a single hidden layer and non-linear 

activation functions is capable of modelling any function to any arbitrary degree of accuracy [53].  

This mathematical fact states that the MLP is the most basic deep learning model capable of 

learning any arbitrary representation of data. 

As a result, this was the first design chosen to try and learn the citation data, and make 

predictions.  The learning task was designed as a multi-class classification, which allowed for 

multiple predictions to be made across each of the designated SCC cases.  The model and training 

of the model was implemented in PyTorch, an open source machine learning framework available 

in Python [54]. 

The model was designed to have only the FCA embeddings inputted into the model, which 

purposefully limited the ability of the learning process.  The dataset was split into a training, 

validation and test sets that comprised of 70%, 20% and 10% of the full dataset respectively.  These 

splits are done to ensure the model is learning, and not simply memorizing the training set.  Two 

test sets (a validation and test set) are used to ensure that the model does not memorize the 

validation set, since the test set is kept completely outside of the training process.  These splits are 

pretty standard in the field as it is based on the “Pareto Principle”, where an additional 10% is 

taken from the training set and devoted to a test set [55]. 

The model trained on the training set, with random batches of 50 examples taken from it at 

a time.  The input size varied, since different embedding sizes were tested in this example.  The 

hidden layer had size 100, while the output layer was the number of SCC citations in the dataset.  

The Rectified Linear Unit (ReLU) activation function was used in between each layer, while the 

output layer was given a sigmoid activation.  The loss function chosen is a Binary Cross Entropy 

Loss (BCELoss), and the optimizer chosen is Adam.  Also, the weights from this model were 

initialized with Xavier initialization, a technique that avoids getting stuck in local minima at the 

beginning of training.  The results from this model are described in detail in the next section. 

Ultimately, the MLP was not capable of representing the dataset well.  Several different loss 

functions, optimizers, and hyper-parameters (i.e. learning rate, batch size) were tested, but the 
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results did not improve by much.  It was ultimately concluded that there was not enough data 

inputted to the models, since it had no information about what it was predicting. 

To introduce the SCC embeddings into the learning, a new model had to be constructed for 

a few reasons.  The challenge with crafting this model was handling the introduced memory and 

computational complexity.  Introducing the SCC embeddings meant adding about 10,000 

embeddings, each of size 250.  If the same MLP model was used, the memory and computational 

toll would increase by a factor of at least 10x.  For this reason, a CNN structure was introduced to 

help reduce the number of connections within the model, while not compromising on the ability 

to learn. 

CNN’s are typically used for tasks involving images.  They are extremely good at feature 

extraction, and contain two important properties known as invariance and equivariance to changes 

in the inputs (meaning that the ordering of the data and perturbations in the data do not affect the 

output) [56].  For the given task, these were desired properties.  Aside from the memory and 

computational savings, the CNN was chosen because it could extract key pieces of information 

from the SCC embeddings.  A 2-layer CNN was ultimately chosen over other architectures for this 

reason. 

This model was also implemented and trained in PyTorch.  The CNN architecture was 

layered on top of the previous MLP, and applied over the entire embedding matrix of the SCC 

corpus and the current FCA embedding.  The first layer had an output of size 50x250, kernel size 

of 15x15, padding of 7 and a stride of 1.  The second convolutional layer had an output size of 

1x250, kernel size of 5x5, padding of 2, and a stride of 1.  The 1x250 output from the CNN was 

concatenated with the 1x250 representation of the current FCA decision, and inputted into the 3-

layer MLP as before.  The MLP had the exact same specifications as above, and the same loss and 

optimizer were used.  After some testing, the optimal batch size was 1, so this was used for all 

experiments.  All specifications mentioned above achieved the best results on the dataset.  There 

is much room for experimentation in the construction of these architectures. 
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4 Results 

This section thoroughly describes the results of each experiment performed in the research 

project.  Refer to the Methods section for a detailed description of the experiments presented 

below. 

 

 

4.1 Summary of the Dataset 

The first conducted experiment was an investigation of the dataset.  This is a vital step in the 

research project, as it uncovers subtleties within the data that might inform results.  A holistic 

summary of the dataset, along with various preprocessing methods applied, is discussed below.  

 

4.1.1 The Downloaded Dataset 

A total of 3,360 Federal Court of Appeal (FCA) decisions were collected, as well as 11,354 

Supreme Court of Canada (SCC) decisions.  The downloaded FCA corpus comprised decisions 

from a period of 2005 to 2019, while the downloaded SCC corpus spans from as far back as 1867 

to 2019.  Table 2 below shows a summary of the decisions downloaded from each court. 

 

Table 2: Summary of the FCA and SCC decision corpora. 

Court Total number of downloaded decisions Date range 

Federal Court of Appeal (FCA) 3,360 2005-2019 

Supreme Court of Canada (SCC) 11,354 1867-2019 

 

 

Within the downloaded FCA corpus of 3,360 decisions, only 2,724 decisions have any 

citations, while only 1,855 of them (about 55% of the downloaded dataset) cite to the SCC. 

Of the 11,354 downloaded SCC decisions, only 9,747 cases were used.  Some of these cases 

were dropped because they were written in French.  For simplicity, the project was scoped to only 

English, which is common practice in NLP tasks.  Fortunately, limiting the SCC dataset to 9,747 

files did not have a significant effect on the citation landscape and therefore did not significantly 

impact the predictions. 
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4.1.2 Analyzing the FCA Corpus 

As mentioned above, of the 3,360 downloaded FCA decisions, 1,855 of them had at least 

one citation to the 9,747 SCC decisions.  The average number of citations to the SCC from the 

dataset is 2, where the median is 1 and the maximum is 66.  A histogram of this distribution of 

citations is plotted in Figure 6 below. 

 

Figure 6: Number of SCC citations per 3,360 downloaded FCA decisions. 

 

 

 

As seen in Figure 6, a majority of the downloaded FCA decisions (roughly half of the dataset) 

do not cite to the SCC.  Although the maximum is 66, almost all of the cases have less than 10 

citations to the SCC.  This confirms that the dataset, and more specifically the truth table, is 

extremely sparse.  There are 6,722 citations out of a possible 32,749,920 combinations 

(9,747x3,360).  In other words, only about 0.02% of the citation space has valid citations.  This is 

typically not optimal for learning predictive models, especially when the predictions are already 

as large as 9,747 decisions. 
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As a result, only the FCA decisions with at least one citation were used.  This reduces the 

amount of decisions from 3,360 to 1,855.  By eliminating about half of the downloaded FCA cases, 

the proportion of citations to FCA cases increased by a factor of 2, which helps enhance the 

prediction space.  Aside from this, the FCA decisions with no citations were dropped for practical 

reasons as well.  The direct application of this research would be to create a program that predicts 

which decisions a particular case should reference/cite.  There would be no added value to the user 

(in this case a legal professional) if the program predicts that there will be no citations, and the 

user should not consult any decisions whatsoever. 

For these reasons, only FCA decisions with at least one citation were kept in the dataset.  

The average number of citations to the SCC among the remaining corpus is now 4, with median 2 

and max 66.  A histogram of this distribution is shown in Figure 7 below. 

 

 

Figure 7: Number of SCC citations per 1,855 FCA decisions with at least one citation. 
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4.1.3 Analyzing the SCC Corpus 

Of the 9,747 decisions in the SCC corpus, 8,360 (85.8%) of them are never cited by the FCA 

corpus.  Correspondingly, the average number of citations to each SCC decision is 0, the median 

is 0, but the max is 541.  This lines up with what has been discovered frequently in citation research 

[39], that a majority of cases are never cited and a select few are heavily cited (also known as 

“precedents”).  A histogram of this distribution is shown in Figure 8 below.  A majority of the 

decisions are shown on the left (less than 10 citations), while there are so few beyond that to the 

right that it can’t be seen visually. 

 

Figure 8: Number of citations to each of the 9,747 SCC decisions. 

 

 

 

1,387 of the 9,747 SCC decisions have at least one citation.  Of these decisions, the average 

is 5 citations to them, the median is 2, and the max is 541.  When investigating a bit further, the 

three most-cited SCC cases (from the downloaded FCA corpus) are: "Housen v. Nikolaisen" (2002 

SCC 33) with 514 citations [57]; "Dunsmuir v. New Brunswick" (2008 SCC 9) with 448 citations 

[58]; and "Agraira v. Canada" (2013 SCC 36) with 200 citations [59].  After these three, the next 

highest SCC case has 122 citations, and then it drops off from there.   
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 These are extremely high numbers, and about 17% of all the citations from the downloaded 

FCA corpus to the downloaded SCC corpus belongs to these three citations.  Upon further 

investigation, it was discovered that these three cases are known as “standard of review cases”, 

which explains why they are so often cited in the FCA corpus.  More aptly put, “the standard of 

review is the legal approach to analyzing the decision” [60].  So, in many decisions, standard of 

review cases will be cited to demonstrate the effectiveness of an argument, although it does not 

develop the legal arguments made.  As a result, these cases can introduce noise to predictions. 

 When these three standard of review cases are removed from the SCC corpus, the number 

of FCA cases with at least one citation drops from 1,855 to 1,588.  In other words, a total of 267 

FCA cases only cited one of these standard of reviews, which could introduce a significant amount 

of bias.  All of the methods presented in this thesis were tested against the dataset with and without 

the standard of review cases, to examine its effects. 

When removing these cases, as shown in Figure 9 below, the histogram of the number of 

citations per FCA case becomes slightly more balanced.  Now, with the removal of these cases, 

the remaining 1,588 FCA cases cite on average 4 cases (with a median of 2 and a max of 64).  

 

Figure 9: Number of SCC citations per 1,588 FCA decisions with at least one citation (without standard of 

review cases). 
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The average number of citations for each of the 9,744 remaining SCC cases is now 4 (with 

a median of 2 and max of 122).  Both datasets (with and without the standard of review cases) are 

used throughout the rest of the analysis to examine the effect on predictions.  Similarly, with the 

removal of the standard of review cases and removing the SCC cases with less than one citation, 

the histogram becomes much more balanced, as shown in Figure 10 below. 

 

Figure 10: Number of citations to the 1,384 SCC decisions with at least one citation. 

 

 

 

4.2 Analyzing the Text and Citation Usage within the FCA Corpus 

To investigate the correlation between the textual similarity and citation similarity in the 

corpus, an initial analysis was conducted.  In this analysis, textual similarity between the 

preprocessed (unbiased) FCA decisions was conducted using a “bag-of-words” approach known 

as tf-idf.  Tf-idf (“term frequency inverse document frequency”) is a standard method used in the 

field of Natural Language Processing (NLP) [61].  It represents documents within a corpus as a 

vector, based on the words used in the document with respect to all words used in the full corpus.  

The representation of each document depends on the number of times a word is used in each 
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document (term frequency), and how unique the word is to the corpus (inverse document 

frequency).  So, if two decisions in the FCA corpus use a specific word such as 

“supercalifragilisticexpialidocious”, tf-idf would pick up on that, and these two documents would 

appear to be more similar as a result.  One of the obvious flaws with tf-idf is that it does not 

consider the context of the way in which words are used.  Also, in this context, it may pick up on 

specific words that are relevant to a certain case, and may sway results accordingly.  More details 

about this technique, along with its limitations, are presented in the Methods section. 

For this analysis of the data, the textual tf-idf similarities and the citation similarities were 

organized by a method known as “cosine similarity”.  Using this analytical method, documents are 

scored and listed by their tf-idf scores and citation scores.  In this way, it is possible to gather FCA 

cases that cite similarly and FCA cases that use words similarly. 

For each FCA decision, the K-most similar documents were determined via textual similarity 

and citation similarity (where K is [1, 5, 10, 20, 50, 100, 1000]).  The overlap between the 

predictions using textual and citation similarity were measured and documented for each value of 

K.  This measures the overlap between the text-based predictions exist and the citation-based 

predictions. 

When K=1 for instance, one prediction will be made using citation similarity and one 

prediction will be made using textual similarity.  These predictions will be compared and if they 

are the same, the overlap is 1 (or 100%), otherwise it is 0 (or 0%).  This measure was applied to 

all values of K listed above, and averaged across the complete dataset.  The results of this analysis 

are shown in Table 3 below, showing the “average overlap” scores, the expected value (random 

probability of overlap) and the net correlation, and the median and max scores for different K 

values across the full FCA corpus. 
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Table 3: Citation similarity and tf-idf textual similarity analysis of 1,855 FCA decisions. 

K Average 
overlap 

Expected 
value 

Net 
Correlation 

Median  Max.  

1 0.034 - +3.34% - 1.00 

5 0.060 0.003 +5.75% - 0.80 
10 0.073 0.005 +6.77% - 0.80 
20 0.089 0.011 +7.78% 0.05 0.65 
50 0.113 0.027 +8.62% 0.08 0.72 

100 0.144 0.054 +8.96% 0.11 0.78 
1000 0.573 0.539 +3.38% 0.57 0.70 

 

 

As Table 3 highlights, there is a noticeable correlation between the tf-idf textual similarity 

and citation similarity of the FCA decisions.  The average overlap start at 3.4% when K=1, and 

jumps to 57.3% when K=1000.  These scores seem extraordinary, but it is important to note that 

there are only 1,855 documents in the corpus, so K=1000 accounts for 53.9% of the corpus.  The 

effect of random guessing is shown in the “Expected value” column.  The “net correlation” column 

shows the difference between the average overlap and random guessing, to truly highlight the 

added value within the predictions.  A positive score in this column means that there is a positive 

correlation between citation similarity and textual similarity. 

The net correlation starts at +3.34% and hovers around +7-9%.  The positive values help 

support the initial hypothesis of the project, that cases of similar language will cite the same cases.  

This finding suggests that there may be a correlation between the way in which language is used 

in decision documents, and the way in which they cite.  This initial analysis ultimately justified 

the hypothesis of the project, and confirmed that learning the relationship between citation usage 

and language usage is possible. 

The same test was performed without the standard of review cases.  When these citations 

were removed, 267 FCA decisions no longer cited to any of the SCC corpus.  These FCA decisions 

were removed for this analysis, since they would not contribute additional information in the 

citation similarity scores.  The results are summarized in Table 4 below. 
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Table 4: Citation similarity and tf-idf textual similarity analysis of 1,588 FCA decisions. 

K Average 
overlap 

Expected 
value 

Net 
correlation 

Median  Max.  

1 0.050 - +4.97% - 1.00 

5 0.087 0.003 +8.35% - 0.80 
10 0.104 0.006 +9.74% - 0.80 
20 0.123 0.013 +11.0% 0.10 0.85 
50 0.152 0.031 +12.1% 0.12 0.74 

100 0.175 0.063 +11.2% 0.13 0.78 
1000 0.645 0.630 +1.52% 0.65 0.71 

 

 

Interestingly, removing the standard of review cases had a significant effect on the results.  

The net correlation values improve consistently by about 1.5% across all values of K.  

Improvements are also noted in the median and maximum columns, and these highlight more 

robust predictions.  Therefore, it appears as though the way in which standard of review cases are 

cited is not correlated with the textual similarity between documents.  This is consistent with 

intuition, since as noted above, the standard of review cases that are mentioned do not develop the 

main argument.  They show that the reasoning provided in the decision was developed in a sound 

manner.  Given the increase in results, it could also be argued that the standard of review cases 

may even have a net negative effect on predictions.  This finding was noted when designing and 

building new predictive models for SCC citations. 

 

 

4.3 Predicting Citations using Tf-idf Similarity  

After the initial data analysis and investigation into the FCA corpus described above, it 

became clear that there is a correlation between citation similarity and textual similarity between 

the downloaded FCA cases.  This meant that predicting, or at least learning how to predict SCC 

citations, could be done reasonably well. 

Developing a baseline predictive model became the next objective.  It was believed that this 

would help inform how the newly designed models were performing.  To score possible citations 

by textual similarity, tf-idf was used again.  It is perfect for a baseline model, because anything 

built beyond this should perform at least as good as this approach, since it does not consider the 
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context in which words are used in documents.  In the same manner as the analysis described 

above, each document of the corpus was represented using tf-idf, and similar documents are 

gathered using cosine similarity.  In this way, each FCA decision in the corpus is compared to each 

SCC decision in the corpus, and comparisons are made based on textual similarity. 

The K most similar SCC decisions for each FCA decision based on tf-idf are predicted for 

each value of K, and the K most similar measures are gathered via cosine similarity.  For different 

values of K, the model’s performance can be measured and examined.  Three distinct 

measurements were taken, known as “precision@K”, “recall”, and the “F1 score”.  These are all 

commonly used measures for information retrieval tasks such as this, and more details are provided 

in the Methods section.  In short, precision@K measures the accuracy of the K predictions, recall 

measures the percentage of all relevant documents predicted in K predictions, and F1 is a weighted 

combination of the two. 

The first analysis involved using the raw texts from the FCA and SCC corpus (of 1,855 and 

9,747 decisions respectively), and K values of [1, 5, 10, 20, 50, 100, 200, 500, 1000].  Like the 

previous investigation with FCA decisions described above, the expected value for recall is noted 

and a net score is analyzed.  Also, the precision@K and recall values for each value of K were 

collected and averaged across the FCA dataset.  These results are presented as “average 

precision@K” and “average recall” in Table 5 below. 

 

Table 5: Baseline citation predictions (using the raw 1,855 FCA and 9,747 SCC texts). 

K 
Avg. 

Precision@K 
Avg. 

Recall 
Expected 

Recall 
Net Avg. 

Recall 
F1 score 

1 0.198 0.069 - +6.9% 0.103 
5 0.124 0.193 - +19.3% 0.151 
10 0.087 0.255 0.001 +25.4% 0.130 
20 0.058 0.321 0.002 +31.9% 0.098 
50 0.032 0.429 0.005 +42.4% 0.060 

100 0.020 0.515 0.010 +50.5% 0.038 
200 0.012 0.617 0.021 +59.6% 0.023 
500 0.006 0.738 0.051 +68.7% 0.012 
1000 0.003 0.838 0.103 +73.5% 0.007 
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The average precision when K=1 is roughly 20%, which is pretty high, and the net average 

recall is 6.9%.  This means that for about every 5 FCA cases, the top prediction is actually cited 1 

of those times.  As K increases, the average precision decreases, but this does not mean that the 

model becomes less precise.  This result is due to an increase in K but a stagnant number of true 

citations.  To illustrate this subtlety, note that the average recall and net average recall values 

monotonically increase as K increases, which implies that more relevant citations are being 

predicted.  Therefore, for theoretical and practical purposes, precision@K is only a valuable 

measurement in this context for small K.  Similarly, average and net average recall scores are not 

as useful for small K values, since as discovered in the data analysis, only about half of the FCA 

decisions have one citation.  This is why the F1 score is so low for K=1, and thus K=5 is the most 

meaningful measurement in the dataset. 

These results generally seem pretty high, at least higher than intuitively expected.  It is 

possible that tf-idf is picking up on the citations within the raw FCA texts, and matching them to 

the correct SCC text.  To be sure, the same analysis was applied to the preprocessed FCA texts 

with the citations removed.  These results are listed in Table 6 below. 

 

Table 6: Baseline citation predictions (using the preprocessed 1,855 FCA and 9,747 SCC texts). 

K 
Avg. 

Precision@K 
Avg. 

Recall 
Expected 

Recall 
Net Avg. 

Recall 
F1 score 

1 0.175 0.061 - +6.1% 0.090 
5 0.110 0.171 - +17.1% 0.134 
10 0.077 0.222 0.001 +22.1% 0.114 
20 0.053 0.294 0.002 +29.2% 0.090 
50 0.029 0.383 0.005 +37.8% 0.055 

100 0.018 0.467 0.010 +45.7% 0.035 
200 0.011 0.557 0.021 +53.6% 0.021 
500 0.005 0.688 0.051 +63.7% 0.011 
1000 0.003 0.799 0.103 +69.6% 0.006 

 
 
 

As expected, the average precision@K scores decrease by about 2.5% across all K values, 

and average recall decreases as well.  Correspondingly, the F1 score at K=5 dropped from 0.151 

to 0.134.  This may not seem like much, but removing all forms of bias within the texts did have 

a considerable effect on the predictive power.  This could mean that the tf-idf approach is merely 
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looking at particular words within the text (i.e. citations), and making predictions based on that.  

In theory, there is nothing wrong with this approach, and ultimately the results are incredibly 

effective for a static method that does not learn. 

One final test was performed using this same predictive model, but now the standard of 

review SCC decisions were removed, along with the 267 FCA cases that did not have any citations 

as a result.  The results are presented in Table 7 below, and interestingly the results improved.  

 
Table 7: Baseline citation predictions without standard of review cases (using the preprocessed 1,588 FCA 

and 9,744 SCC texts). 

K 
Avg. 

Precision@K 
Avg. 

Recall 
Expected 

Recall 
Net Avg. 

Recall 
F1 score 

1 0.201 0.081 - +8.1% 0.115 
5 0.121 0.214 - +21.4% 0.155 
10 0.084 0.276 0.001 +27.5% 0.129 
20 0.057 0.355 0.002 +35.3% 0.098 
50 0.031 0.456 0.005 +45.1% 0.058 

100 0.019 0.536 0.010 +52.6% 0.037 
200 0.011 0.619 0.021 +59.8% 0.022 
500 0.006 0.730 0.051 +67.9% 0.012 
1000 0.003 0.818 0.103 +71.5% 0.006 

 

 

The average precision scores roughly deviated back to the original levels with raw texts, 

while the average recall improved beyond its original levels.  This change is reflected in an 

increased F1 score of 0.155 for K=5.  This confirms the suspicion that the standard of review case 

citations do not contribute any valuable information to the predictions, and actually introduce noise 

in the predictions. 

Another experiment was conducted on the same dataset provided above, but with all quotes 

within the FCA decisions stripped.  It was suspected that the tf-idf similarity measure was picking 

up on direct quotes used throughout the FCA corpus.  The results from this experiment are not 

presented here, simply because they were incredibly similar to the previous experiment discussed 

above.  There was no conclusive evidence to claim that keeping the quotes influenced predictions 

negatively or positively, and as a result, they were kept in the FCA corpus for future models. 

Another limitation of the presented baseline model is that the predictions are independent of 

time.  The results presented above, in theory, are extremely conservative, since it is possible for 
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the model to predict SCC citations that were not available to the author of the FCA decision at the 

time of the cases publication.  In fact, this was observed in the existing model, as described in the 

Discussion section.  A final test was conducted on the same model, but only valid predictions (in 

terms of time) were kept.  The results are presented in Table 8 below. 

 

Table 8: Baseline citation predictions without standard of review cases and release dates accounted for 

(using the preprocessed 1,588 FCA and 9,744 SCC texts). 

K 
Avg. 

Precision@K 
Avg. 

Recall 
Expected 

Recall 
Net Avg. 

Recall 
F1 score 

1 0.241 0.094 - +9.4% 0.136 
5 0.129 0.223 - +22.3% 0.164 
10 0.088 0.284 0.001 +28.3% 0.135 
20 0.060 0.365 0.002 +36.3% 0.102 
50 0.032 0.462 0.005 +45.7% 0.060 

100 0.019 0.541 0.010 +53.1% 0.037 
200 0.011 0.625 0.021 +60.4% 0.022 
500 0.006 0.734 0.051 +68.3% 0.011 
1000 0.003 0.822 0.103 +71.9% 0.006 

 

 

The average precision for K=1 increases by 4%, and the average recall improves by 1.3% 

for K=1.  This is shown in the F1 score, which improves by 0.021 for K=1.  The F1 score for the 

top 5 predictions increased as well, from 0.155 to 0.164.  As intuitively predicted, removing invalid 

predictions helped improve the model.  In this analysis, only the year of publication for each 

decision was used, as the specific date was too hard to extract.  In theory, edge cases are possible, 

where the prediction was published after the FCA case but within the same year.  These situations 

should not happen frequently, and should be inconsequential to the presented results. 

As shown above, the predictive power of the tf-idf similarity is considerably good in this 

context.  This is a similar finding to what was mentioned by Shahmirzadi et al. [11].  The 

qualitative analysis of this model is discussed in detail in the Discussion section, and this model 

will be referenced as a baseline in comparison to the newly developed predictive models discussed 

below. 
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4.4 Predicting Citations with Deep Learning 

With the baseline results, it became possible to design new models and test their 

effectiveness.  At this point, the literature review of NLP applied to legal texts became helpful.  To 

get the texts into workable form, document embeddings were learned for each decision in the FCA 

and SCC corpora.  Doc2Vec was the method used to learn these embeddings.  This is a paragraph 

or document targeted method of learning embeddings, an extension of version of Word2Vec, 

proposed by Le and Mikolov in their seminal paper from 2014 [30].  More details about the 

algorithm are provided in the Methods section. 

The Python library gensim was used to implement the Doc2Vec method of learning 

document embeddings [50].  The ‘distributed memory’ setting was used as opposed to the 

‘distributed bag-of-words’ setting, since it was intended for the structure of the sentence and 

contexts of the words to be maintained in some capacity.  Standard learning parameters were used 

in training, as referenced with Lau and Baldwin’s exploration with large corpora [51].  With that 

said, there is plenty of room for experimentation and optimization within this portion of the 

research, as more research needs to be conducted to explore the embedding space for legal texts. 

More explicitly, model parameters of 𝛼 = 0.025, 𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 = 5, 𝑎𝑛𝑑 𝛼𝑚𝑖𝑛 = 0.01 were 

used to train the embeddings.  The size of the embedding vector was experimented with, however.  

Two sets of embeddings were trained on the model, one with embedding size 250 (that trained for 

100 epochs) and one that had embedding size 1000 (that trained for 10 epochs).  These two sizes 

were chosen based on what has been used in research such as Lau and Baldwin’s work mentioned 

above, but the embedding size of 1000 trained extremely slowly and only 10 epochs ran.  Relative 

to Lau and Baldwin who reference up to 1000 epochs, 100 epochs for the embedding size of 250 

is quite small as well, and this could be improved with more computation available in a future 

project.  Under the given time and computation constraints of this project, these were the only 

feasible methods of training, and could very well be improved. 

With the learned representations of each decision, building learning-based models to predict 

SCC citations became possible.  Two main model architectures were used, both of which involved 

neural networks.  The first model, intended to be simple, was a 3-layer Multilayer Perceptron 

(MLP).  The inputs to this model only consisted of the learned embeddings of the FCA corpus.  

The second model was built with the intention of introducing the learned SCC embeddings into 

the model as contextual information.  To do so, a 2-layer Convolutional Neural Network (CNN) 
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was added to scan the embeddings of the SCC corpus, condense the information to save 

computation, and concatenate the results to the original MLP model.  The specific details of the 

model architectures are discussed thoroughly in the Methods section, and the results of the training 

is listed in the next two sections. 

 

4.4.1 MLP Model Results 

The same model was trained on the trained embeddings of size 250 and 1000, to 

quantitatively evaluate which learned embeddings was more powerful.  The dataset of 1,855 FCA 

decisions was split into training, validation and test sets (which included the standard of review 

cases).  The training set comprised 70% of the dataset, while the validation set was given 20% and 

the test set 10%, a relatively standard data allocation. 

Each model is measured against the same metrics used in the baseline: “average 

precision@K”; “average recall”; “net average recall”; and “F1” scores.  Each model is evaluated 

against K values of [1, 5, 10, 20, 50, 100, 200, 500, 1000], and the results are split between the 

training, validation and test sets.   

The first experiment was training the model on the embedding vectors of size 1000.  Quickly 

after training began, it became very apparent that no learning was taking place.  It quickly 

approached a minimum loss solution after the first epoch, and always predicted the same thing.  

The results of the training, validation and test sets are presented in Tables 9-11 below. 

 

Table 9: MLP model performance on the training dataset of 1,335 FCA examples (embedding size 1000). 

K 
Avg. 

Precision@K 
Avg. 

Recall 
Expected 

Recall 
Net Avg. 

Recall 
F1 score 

1 0.006 0.002 - +0.2% 0.003 
5 0.009 0.013 - +1.3% 0.011 
10 0.007 0.018 0.001 +1.7% 0.011 
20 0.006 0.028 0.002 +2.6% 0.010 
50 0.003 0.033 0.005 +2.8% 0.006 

100 0.003 0.060 0.010 +5.0% 0.006 
200 0.005 0.204 0.021 +18.4% 0.009 
500 0.005 0.574 0.051 +52.4% 0.009 
1000 0.002 0.613 0.103 +51.2% 0.005 
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Table 10: MLP model performance on the validation dataset of 334 FCA examples (embedding size 1000). 

K 
Avg. 

Precision@K 
Avg. 

Recall 
Expected 

Recall 
Net Avg. 

Recall 
F1 score 

1 0.003 - - - 0.001 
5 0.010 0.012 - +1.2% 0.011 
10 0.007 0.017 0.001 +1.6% 0.010 
20 0.004 0.030 0.002 +2.8% 0.011 
50 0.003 0.036 0.005 +3.1% 0.006 

100 0.003 0.067 0.010 +5.7% 0.006 
200 0.005 0.241 0.021 +22.1% 0.009 
500 0.004 0.570 0.051 +51.6% 0.008 
1000 0.002 0.608 0.103 +50.7% 0.004 

 

 

Table 11: MLP model performance on the test dataset of 186 FCA examples (embedding size 1000). 

K 
Avg. 

Precision@K 
Avg. 

Recall 
Expected 

Recall 
Net Avg. 

Recall 
F1 score 

1 0.005 0.001 - +0.1% 0.001 
5 0.004 0.004 - +0.3% 0.004 
10 0.004 0.006 0.001 +0.5% 0.005 
20 0.004 0.013 0.002 +1.1% 0.006 
50 0.003 0.023 0.005 +1.8% 0.005 

100 0.002 0.041 0.010 +3.1% 0.005 
200 0.004 0.168 0.021 +14.8% 0.008 
500 0.004 0.512 0.051 +46.1% 0.008 
1000 0.002 0.574 0.103 +47.3% 0.005 

 

 

It is evident from the results that the model was not able to successfully learn the dataset.  

The average recall and precision scores are nearly zero for each of the data sets, for low values of 

K.  The F1 score is at least 10x worse than the baseline results for K=5, across each of the datasets.  

Another bad sign is that the performance is really similar among each of the datasets, which implies 

that the model is not learning from the training set.  This also confirmed that the model has learned 

to always predict the same cases, and upon further inspection that was confirmed.  These findings 

are described in detatil in the Discussion section.  A few model parameters such as learning rate 

and loss functions were tweaked to try and help the learning, but the problem persisted.   It 
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appeared as though the problem lied with either the architecture, the amount of training data, or 

the inputted parameters. 

The same model was retrained using the trained Doc2Vec embeddings of size 250 for 10 

epochs.  This model appeared to learn for the first 10 epochs, after which it stopped and the same 

predictions were being made for every FCA decision.  Model parameters were tweaked, but to no 

avail.  The results across each data set are presented in Tables 12-14 below. 

 

Table 12: MLP performance on the training dataset of 1,335 FCA examples (embedding size 250). 

K 
Avg. 

Precision@K 
Avg. 

Recall 
Expected 

Recall 
Net Avg. 

Recall 
F1 score 

1 0.218 0.099 - +9.9% 0.136 
5 0.064 0.138 - +13.8% 0.088 
10 0.044 0.177 0.001 +17.6% 0.070 
20 0.027 0.208 0.002 +20.6% 0.047 
50 0.012 0.228 0.005 +22.3% 0.023 

100 0.007 0.244 0.010 +23.4% 0.013 
200 0.004 0.261 0.021 +24.0% 0.008 
500 0.002 0.305 0.051 +25.4% 0.004 
1000 0.001 0.364 0.103 +26.1% 0.002 

 

 
Table 13: MLP performance on the validation dataset of 334 FCA examples (embedding size 250). 

K 
Avg. 

Precision@K 
Avg. 

Recall 
Expected 

Recall 
Net Avg. 

Recall 
F1 score 

1 0.240 0.110 - +11.0% 0.151 
5 0.065 0.142 - +14.2% 0.089 
10 0.043 0.174 0.001 +17.3% 0.069 
20 0.026 0.194 0.002 +19.2% 0.045 
50 0.011 0.206 0.005 +20.1% 0.022 

100 0.006 0.224 0.010 +21.4% 0.012 
200 0.004 0.239 0.021 +21.8% 0.007 
500 0.002 0.287 0.051 +23.6% 0.004 
1000 0.001 0.334 0.103 +23.1% 0.002 
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Table 14: MLP performance on the test dataset of 186 FCA examples (embedding size 250). 

K 
Avg. 

Precision@K 
Avg. 

Recall 
Expected 

Recall 
Net Avg. 

Recall 
F1 score 

1 0.226 0.095 - +9.5% 0.133 
5 0.061 0.120 - +12.0% 0.081 
10 0.038 0.137 0.001 +13.6% 0.060 
20 0.024 0.167 0.002 +16.5% 0.043 
50 0.011 0.178 0.005 +17.3% 0.021 

100 0.006 0.185 0.010 +17.5% 0.012 
200 0.003 0.196 0.021 +17.5% 0.007 
500 0.002 0.228 0.051 +17.7% 0.003 
1000 0.001 0.271 0.103 +16.8% 0.002 

 

 

At first glance, the results seem to be much more reasonable.  The average precision of the 

training set is 21.8%, which is relatively consistent with the baseline that achieved 24.1%.  The 

average recall is actually higher than the baseline across each dataset, and the F1 scores are higher 

for K=1.  However, the net average recall stagnates around +25-26% for the training set as K 

increases, whereas the baseline achieved up to +71.9%.  This finding is reflected in the F1 score 

of the model as K increases.  Another interesting point, as in the previous model with embedding 

size 1000, the results from each dataset is not significantly different.  This again implies that it did 

not learn from the training set, and predicts the same cases each time, independent of the inputted 

FCA case embedding. 

This experiment, although unsuccessful in beating the baseline results, is meaningful 

because it suggests that the embeddings of size 250, although smaller, do model the corpus better 

and perform better for predictions compared to the embeddings of size 1000.  This is likely due to 

the fact that these embeddings were trained for 100 epochs on the Doc2Vec algorithm, while the 

embeddings of size 1000 were only trained for 10 epochs.  This resulted from the limitations in 

computational complexity and memory for the project.  As a result, the problem with the above 

model is more likely to exist in the architecture and/or the inputted parameters, so a new model 

was designed accordingly. 
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4.4.2 CNN + MLP Model Results 

The new architecture was developed due to the lack of success with the simple MLP 

architecture.  This model was designed to include the SCC embedding information, where the 

previous only considered FCA embeddings and was prone to overfitting or memorizing the data.  

This new model included a Convolutional Neural Network (CNN) architecture, of which the 

details are outlined in the Methods section. 

The model initially trained on 1,855 FCA decisions (which included the standard of review 

cases).  The Doc2Vec embeddings of size 250 were used, since the size of 1000 was too expensive 

in terms of memory and computation, and following the findings from the previous model.  The 

same data split was applied as before, with 70% devoted to the training set, 20% to the validation 

set, and 10% to the test set.  The model trained for 11 epochs before training was stopped.  At this 

point, the validation loss began to stagnate while the training loss kept decreasing.  The same 

metrics as the baseline were used to analyze this model, and are presented in Table 15 below. 

 

Table 15: CNN+MLP performance on the training dataset of 1,335 FCA examples (embedding size 250). 

K 
Avg. 

Precision@K 
Avg. 

Recall 
Expected 

Recall 
Net Avg. 

Recall 
F1 score 

1 0.866 0.432 - +43.2% 0.576 
5 0.481 0.816 - +82.6% 0.605 
10 0.316 0.919 0.001 +91.8% 0.470 
20 0.186 0.975 0.002 +97.3% 0.312 
50 0.081 0.997 0.005 +99.2% 0.150 

100 0.041 1.000 0.010 +99.0% 0.079 
200 0.020 1.000 0.021 +97.9% 0.039 
500 0.008 1.000 0.051 +94.9% 0.016 
1000 0.004 1.000 0.103 +89.7% 0.008 

 

 

 It is clear that the model is learning from the training set, and it is learning exceptionally 

well.  The average precision when K=1 is 86.6%, and the average recall is 0.432.  These are much 

better than the baseline.  As K increases, the average recall quickly jumps to 81.6% at K=5, and 

100% at K=100.  At K=5, the F1score is 0.605, about 4x better than the baseline.  This is a positive 

step, meaning that the model is not only precise, it is predicting the most relevant documents. 



 

 

 

 45 

 An advantage of this architecture is that the outputted predictions are processed through a 

sigmoid activation function before computing the loss (more details provided in Methods).  The 

sigmoid activation function smooths out all possible inputs and maps them so that they are within 

the range of 0 and 1.  As a result, if the model is trained properly, these predictions can be viewed 

as confidence scores.  In theory, the most confident prediction will have the highest value, and 

vice-versa. 

 To evaluate how the model is learning, the average precision of the predictions could be 

plotted against the confidence of the predictions.  This would help confirm if the model is too 

confident in its predictions, and potentially overfitting on the dataset.  To do this, the confidence 

scores were divided into 20 buckets (equally of size 0.05), and the average precisions were plotted 

for each confidence threshold. Figure 11 below shows this plot on the training set. 

 

Figure 11: CNN+MLP training set average precision vs. confidence of predictions (embedding size 250). 

 

 

 

 The plot confirms that the model has learned the training set (the average precision 

monotonically increases for all confidence thresholds).  However, the plot is not linear, and appears 
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logarithmic in shape.  At a confidence threshold of about 0.1, the average precision reaches about 

60%.  Ideally, the relationship between the average precision and confidence should be linear, 

meaning that the predictions are not heavily skewed towards either 0’s or 1’s.  The implication of 

the above plot could mean that the training data is overfitting to training set, since for very low 

confidences the average precision is much better than the baseline. 

 To test a model’s ability to generalize, the ultimate test is to evaluate the results on data it 

hasn’t trained on, in this case the validation and test sets.  These results help signify if the model 

has overfitted to the training set, or if it has generalized to examples beyond the training set.  The 

same model was tested against the validation and test sets, and the results are presented in Table 

16 and Table 17 below. 

 

Table 16: CNN+MLP performance on the validation dataset of 334 FCA examples (embedding size 250). 

K 
Avg. 

Precision@K 
Avg. 

Recall 
Expected 

Recall 
Net Avg. 

Recall 
F1 score 

1 0.434 0.211 - +21.1% 0.284 
5 0.206 0.405 - +40.5% 0.273 
10 0.135 0.487 0.001 +48.6% 0.211 
20 0.086 0.571 0.002 +56.9% 0.149 
50 0.043 0.667 0.005 +66.2% 0.081 

100 0.025 0.734 0.010 +72.4% 0.048 
200 0.015 0.802 0.021 +78.1% 0.029 
500 0.007 0.869 0.051 +81.8% 0.014 
1000 0.004 0.906 0.103 +80.3% 0.008 

 

 

Table 17: CNN+MLP performance on the test dataset of 186 FCA examples (embedding size 250). 

K 
Avg. 

Precision@K 
Avg. 

Recall 
Expected 

Recall 
Net Avg. 

Recall 
F1 score 

1 0.355 0.190 - +19.0% 0.248 
5 0.173 0.359 - +35.9% 0.233 
10 0.118 0.430 0.001 +42.9% 0.185 
20 0.077 0.510 0.002 +50.8% 0.134 
50 0.040 0.624 0.005 +61.9% 0.075 

100 0.024 0.705 0.010 +69.5% 0.046 
200 0.014 0.782 0.021 +76.1% 0.028 
500 0.007 0.870 0.051 +81.9% 0.014 
1000 0.004 0.910 0.103 +80.7% 0.008 

 



 

 

 

 47 

The results for the validation and test sets are not as good as the training set, but are very 

promising.  For the top prediction (K=1), the validation set achieved an average precision of 43.4% 

and the test set achieved 35.5%.  The model is much more powerful than the baseline, as can be 

seen from the validation and test F1 scores of 0.273 and 0.233 for K=5.  The discrepancy between 

these values can mean that the model began to memorize the validation set, and therefore the test 

results are more indicative of the true performance as a result. 

The same plots for the average precision vs. the confidence of the prediction are gathered 

for the validation and test sets, and shown in Figure 12 and Figure 13 below respectively. 

 

Figure 12: CNN+MLP validation set average precision vs. confidence of predictions (embedding size 250). 
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Figure 13: CNN+MLP test set average precision vs. confidence of predictions (embedding size 250). 

 

 

 

The above plots display positive signs of generalization, as the relationship between the 

average precision and confidence is roughly proportional.  It is also important to note that for 

confidence’s over about 80%, the average test precision is roughly 60%.  These are incredible 

results, and this precision is a significant improvement on the baseline.  The precisions do start at 

about 20% for low confidences, and the predictions for low confidences can be improved. 

The main criticism of this model lies in the discrepancy between the training results and 

validation and test results.  The results imply that the model was overfitting and/or the learned 

representation of the data is not powerful enough to generalize to other examples like the test set.  

These results could also result from limitations in the dataset.  The limited number of training 

examples could lead to overfitting, and since the data is so sparse, it could limit the potential of 

this model.  The underlying assumption of this project is that the citations generated from legal 

professionals are correct and represent the data well, but as shown in the literature review, this 

may not be the case [37] [38] [39].  A detailed qualitative analysis of this model, its advantages 

and limitations are all described in the Discussion section. 
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The model was retrained on the dataset without the standard of review cases, to evaluate the 

effects on predictions.  The results are displayed in Tables 18-20 below. 

 

Table 18: CNN+MLP performance on the training dataset of 1,143 FCA examples (embedding size 250). 

K 
Avg. 

Precision@K 
Avg. 

Recall 
Expected 

Recall 
Net Avg. 

Recall 
F1 score 

1 0.886 0.417 - +41.7% 0.567 
5 0.515 0.819 - +81.9% 0.632 
10 0.340 0.923 0.001 +92.2% 0.497 
20 0.200 0.975 0.002 +97.3% 0.332 
50 0.086 0.996 0.005 +99.1% 0.158 

100 0.044 1.000 0.010 +99.0% 0.084 
200 0.022 1.000 0.021 +97.9% 0.043 
500 0.008 1.000 0.051 +94.9% 0.016 
1000 0.004 1.000 0.103 +89.7% 0.008 

 

 

Table 19: CNN+MLP performance on the validation dataset of 286 FCA examples (embedding size 250). 

K 
Avg. 

Precision@K 
Avg. 

Recall 
Expected 

Recall 
Net Avg. 

Recall 
F1 score 

1 0.381 0.139 - +13.9% 0.204 
5 0.199 0.307 - +30.7% 0.241 
10 0.134 0.382 0.001 +38.1% 0.198 
20 0.086 0.462 0.002 +46.0% 0.145 
50 0.046 0.596 0.005 +59.1% 0.085 

100 0.028 0.677 0.010 +66.1% 0.054 
200 0.016 0.763 0.021 +74.2% 0.031 
500 0.007 0.854 0.051 +80.3% 0.014 
1000 0.004 0.893 0.103 +79.0% 0.008 
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Table 20: CNN+MLP performance on the test dataset of 159 FCA examples (embedding size 250). 

K 
Avg. 

Precision@K 
Avg. 

Recall 
Expected 

Recall 
Net Avg. 

Recall 
F1 score 

1 0.314 0.124 - +12.4% 0.178 
5 0.172 0.282 - +28.2% 0.214 
10 0.120 0.370 0.001 +36.9% 0.181 
20 0.080 0.455 0.002 +45.3% 0.136 
50 0.042 0.577 0.005 +57.2% 0.078 

100 0.025 0.656 0.010 +64.6% 0.048 
200 0.014 0.730 0.021 +70.9% 0.027 
500 0.007 0.822 0.051 +77.1% 0.014 
1000 0.003 0.851 0.103 +74.8% 0.006 

 

 

The training set results are roughly similar, but as expected, the validation and test results 

are slightly worse.  This confirms the suspicion that certain cases are being predicted more often 

than others, which directly results from the dataset.  By removing the standard of review cases, the 

validation and test average precisions decrease by about 4.5% and 5.5% respectively, across all 

values of K.  The average recall also falls, and this is reflected in the F1 scores. 

These scores are more representative of the model’s predictive capabilities, since previous 

investigations showed that the standard of review cases do not contribute any significant 

information.  With that said, the model is still notably better than the baseline, with an improved 

F1 score of 0.214 on the test set from the baseline of 0.155 when K=5.  This is promising, and 

means that the model did succeed in learning the intricacies of the language used in the legal texts. 

It is important to note that time is not accounted for when the model is training.  As shown 

with the baseline model, the results in theory should improve when time is factored into the 

predictions.  This means that the model is truly more powerful than presented above. 

Indeed, the test results do improve when time is factored into the predictions.  The results 

are presented in Table 21. 
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Table 21: CNN+MLP performance on the test dataset of 159 FCA examples with release year factored in 

(embedding size 250). 

K 
Avg. 

Precision@K 
Avg. 

Recall 
Expected 

Recall 
Net Avg. 

Recall 
F1 score 

1 0.327 0.128 - +12.8% 0.184 
5 0.174 0.289 - +28.9% 0.217 
10 0.116 0.363 0.001 +36.2% 0.176 
20 0.080 0.461 0.002 +45.9% 0.137 
50 0.042 0.570 0.005 +56.5% 0.078 

100 0.025 0.660 0.010 +65.0% 0.048 
200 0.014 0.735 0.021 +72.4% 0.028 
500 0.006 0.806 0.051 +75.5% 0.013 
1000 0.003 0.834 0.103 +73.1% 0.007 

 

 

The average precision and recall both increase for K=1 and K=5.  These improvements are 

reflected in the F1 score, which improved slightly from 0.214 to 0.217 when K=5.  The findings 

are consistent with the improvements shown in the baseline model, when time was factored in. 

 

5 Discussion 

This section is devoted to qualitatively analyzing the results from all predictive models 

presented above, identifying key findings and limitations of each. 

 

5.1 Baseline Predictor using Tf-idf Similarity 

A predictive model of SCC citations was developed using tf-idf to generate document 

embeddings, and cosine similarity to find similar decisions.  This model was developed to serve 

as a baseline comparator for the newly developed models, since in theory, any reasonable predictor 

should be at least as good as this basic one. 

The baseline predictive model was applied to the raw dataset, the cleaned dataset, and the 

cleaned dataset with standard of review cases removed.  The quantitative results of these 

experiments are presented in the previous section.  The F1 score of the bias-free model 

(preprocessed texts and standard of review cases removed) is 0.115 for K=1 and 0.155 for K=2.  

These numbers intuitively seem high.  A more thorough investigation is necessary to truly 
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understand why this model is performing reasonably well, and specifically what the tf-idf 

similarity is interpreting in each prediction. 

To get a better picture of what the model is predicting, 5 correct and incorrect predictions 

were chosen at random.  Each case was read to try to understand (holistically) where the model 

went wrong, and what it interpreted when the correct prediction was made.  For simplicity, only 

the top predictions (K=1) were considered for this analysis, since in theory these are the predictions 

that the model is most confident about. 

The model correctly predicted the citation 2005 SCC 57 for the decision 2013 FCA 168.  

The respondent of both cases is “The Minister of Citizenship and Immigration”, which is a positive 

sign.  When looking a bit more closely, the FCA decision refers to the SCC decision three times 

throughout the document.  For instance, in the unformatted text for 2013 FCA 168, paragraph 5 

reads: 

The Judge found as a fact that Mr. Zhang failed to provide a credible 

individualized plan for mitigating the excessive demand on social 

services in Canada (per Hilewitz v. Canada (Minister of Citizenship and 

Immigration); De Jong v. Canada (Minister of Citizenship and 

Immigration), 2005 SCC 57, [2005] 2 S.C.R. 706). [62] 

 

This may have swayed the baseline model if the raw texts were used, as it may have picked 

up on unique words such as “Hilewitz” or “De Jong” that would appear in both the FCA and SCC 

decisions. In the preprocessed texts, the entire reference at the end of the above paragraph is 

removed, along with the other references to the citation in the rest of the document.  Upon further 

investigation, the sentence preceding the citation is truly what is intriguing.  The author of the 

decision did not directly quote 2005 SCC 57, but there are specific phrases common to both 

decisions such as “excessive demands on social services” and “individualized plan”.  This is an 

interesting finding because even though direct quotes were removed, tf-idf was able to read into 

this subtlety in the author’s use of language.  This means that reading the SCC case had a 

significant effect on the author, and the author used similar language in the FCA decision to really 

drive the main point of the argument.  This could be a reason why the baseline tf-idf predictor was 

so effective in this context. 

This same effect was observed in each of the other 4 randomly chosen correct predictions.  

The baseline model is able to extrapolate some of the subject matter from the decisions, even 

without knowing the context or semantic meaning of the phrases.  For instance the model correctly 
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predicted that 2015 FCA 286 cited 2008 SCC 61.  Similar to the above example, the two documents 

used similar language and both contain key phrases such as “balance of probabilities” and “self-

evident to try to obtain the invention” [63], although they are not directly quoted. 

The correct predictions tell an interesting story, but these account for only about one in every 

five predictions, as the average precision@K is 20.1% for K=1 in the bias-free model.  It is more 

interesting to analyze the incorrect predictions, to truly understand the shortcomings of the model. 

The model predicts that 2012 FCA 199 will cite 2014 SCC 29, which of course is impossible 

since the SCC decision did not exist at the time of the citation.  So why did the model predict this 

citation?  The facts of the cases are extremely similar.  They both mention the “St. Lawrence 

River”, “Baie Comeau”, the “Marine Liability Act”, and the “Charts and Nautical Publications 

Regulations” [64] [65].  In fact, the SCC case actually cites the FCA case, as it was an appeal from 

a previous judgement.  In some sort of consolation, the model was not wrong, but the citation 

occurred in the other direction.  The obvious solution to this would be incorporating time within 

the predictions. 

Similarly, the model incorrectly predicted a citation between 2015 FCA 186 and 2010 SCC 

2, but the prediction seems reasonably plausible.  The FCA case is a consolidated appeal about 

Nuclear power plant projects that were not completed properly, while the SCC case is about mining 

in British Columbia [66] [67].  One of the appellants in the FCA case is the “Minister of Fisheries 

and Oceans”, who is the respondent in the SCC case.  Both cases refer to the “Canadian 

Environment Assessment Act”, and phrases like “energy” are used.  In this way, one could argue 

that the subject matter is similar and the model has made a reasonable prediction.  However, the 

law is very different, and the model failed to identify subtleties in cases like “nuclear” vs. 

“mining”.  The model was anchored on the other terms used, as they appeared more often. 

There were other examples where the model’s predictions were severely wrong as well.  The 

model predicted that 2008 FCA 215 would cite 2001 SCC 68, two very different cases.  The FCA 

case deals with a class action filed by the respondents who wanted refunds on immigration visas, 

while the SCC case is about a noise and pollution complaint about practices in the city of Toronto 

[68] [69].  This is a scenario demonstrates when tf-idf failed miserably.  There are certain words 

that the predictor has noticed appears in both cases, but unfortunately, they appear in very different 

contexts.  For instance the FCA case mentions the “Immigration and Refugee Protection 

Regulations” and the SCC case mentions the “Environmental Protection Act”.  It is clear that 
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“Protection” is the common word, but the reference legislations are completely different.  The only 

similar component between these two documents is that they both deal with a “class action”, and 

these two words are referenced frequently in both texts. 

To see if there are any larger trends in the predictions of the model, a holistic analysis of the 

predictions was gathered and averaged.  Each prediction from the model was tracked, and the 

confidences (positions) of each prediction were averaged.  This could be used to see what cases 

are most often predicted on average, and what cases are least often predicted on average.  The 10 

most and least common predictions by the baseline model, along with the true number of citations 

to each case, is presented in Table 22 below4. 

 

Table 22: List of the 10 most and least common predictions by the baseline model (averaged on the dataset). 

Most confident 
predictions 

Number of 
citations 

Least confident 
predictions 

Number of 
citations 

1999 CanLII 665 12 1928 CanLII 41 0 
1923 CanLII 45 0 1969 CanLII 94 0 
1907 CanLII 104 0 1967 CanLII 5 0 
1971 CanLII 305 0 1951 CanLII 41 1 
1991 CanLII 73 0 1919 CanLII 37 0 

1997 CanLII 17020 5 1967 CanLII 62 0 
1982 CanLII 42 0 1989 CanLII 55 0 
2017 SCC 55 3 1934 CanLII 55 0 

1992 CanLII 45 0 1934 CanLII 49 0 
1991 CanLII 76 0 2012 SCC 6 0 

 

 

The top 10 most cited predictions do not look much different than the top 10 least cited 

predictions.  Seven of the most cited predictions do not actually have any true citations to them.  

Two important notes can be made from these results.  Firstly, it confirms that the model has no 

 

 

 

 

 

4 Note that each of the presented cases are SCC citations, some with a different naming convention 

for the citations.  The naming provided is consistent with the naming convention of CanLII 

(Canadian Legal Information Institute), who graciously provided the SCC texts used in this project. 
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bias resulting from the citation space of the dataset, and predicts cases that it believes will have 

the highest likelihood of being cited.  Another interesting point is that this means the model could 

be improved substantially.  The model is not learning, and the number of citations to each citation 

should in theory affect predictions.  For instance, assuming the dataset is representative of the way 

in which predictions should be cited in practice, then it would be in the best interest of the model 

to consider the amount of times a predicted citations is actually cited in the dataset.  

So in short, the baseline predictor works reasonably well, but fails to identify the subtleties 

and intricacies of the English language.  It is also naïve in the sense that it does not consider the 

use of citations in the dataset, which in theory could make the model more powerful.  These factors 

significantly limit the capabilities of the model, suggesting that the learning-based methods 

developed and presented in this research should learn to take advantage of this.  The trade-off, 

however, exists between naïve predictions and overfitting on the given data.  This is discussed 

thoroughly in the analysis of the learning-based methods below. 

 

 

5.2 MLP Predictor  

As discussed in the Results section, the originally designed MLP models did not perform as 

expected.  There was not a significant difference between the training and test results, which is 

troubling.  This signifies that the model was not properly training, and thus not properly learning 

from the data. 

As initially suspected, a deeper investigation into the results revealed that the models were 

almost always predicting the same citations.  With the trained Doc2Vec embeddings of size 250, 

the model was predicting one of three cases in the test set, for K=1.  These cases are 2002 SCC 

33, 2008 SCC 9, and 2013 SCC 36.  Interestingly, these three cases are all standard of review 

cases, and comprise about 17% of all citations in the initial dataset.  This explains why the average 

recall and precision is so high for K=1, and why the results do not follow as K increases. 

There are several key takeaways from the experiments with the MLP model.  The first is that 

although they are larger and should in theory carry more information, the learned Doc2Vec 

embeddings of size 1000 carry less information than the size 250.  This probably follows from the 

length of training, as the 1000 sized embeddings were only trained for 10 epochs and the 250 sized 

were trained for 100 epochs.  This was chosen because of the resource constraints in the project, 
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and the larger embeddings took much longer to train per epoch.  There is much room for 

experimentation in future research projects, but at least for now, the embeddings of size 250 were 

used for the rest of the project. 

Another important finding is that the current architecture, although flawed in many ways, at 

least learned to predict the same three cases.  These predictions were made without any information 

about the SCC corpus, which intuitively should improve the predictive capability of the model.  It 

should be noted that the model did in fact outperform the baseline model, as naïve as it was.  This 

was a positive experiment for these reasons, which helped inform the models that were built next.  

 

 

5.3 CNN + MLP Predictor 

As shown in the Results section, this model was much better at learning the training set as 

was shown in the test results.  The model is capable of significantly outperforming the baseline, 

and another advantage of the model over the baseline is that it gives a confidence of the prediction.  

For high predictions, the model showed high average precision on the dataset.  With time and the 

standard of review cases factored in, the F1 score for K=5 was 0.217, a significant improvement 

on the baseline of 0.164.  These are all positive signs which indicate that the model is learning the 

intricacies of the language used in the legal texts, which the baseline model neglects. 

A holistic view of the predictions is shown in the following table, which shows the most and 

least confident predictions (averaged over the dataset), along with the number of true citations. 

  

Table 23: List of the 10 most and least common predictions by the proposed model (on the test set). 

Most confident 
predictions 

Number of 
citations 

Least confident 
predictions 

Number of 
citations 

1999 CanLII 699 102 1933 CanLII 51 0 
2008 SCC 51 19 1936 CanLII 16 0 
2014 SCC 53 40 1990 CanLII 97 2 
2005 SCC 54 122 1955 CanLII 16 0 
2002 SCC 42 47 1992 CanLII 32 0 

1998 CanLII 837 91 1997 CanLII 389 0 
2013 SCC 37 0 2009 SCC 13 0 
2011 SCC 61 119 1996 CanLII 177 0 
2003 SCC 19 55 1923 CanLII 48 0 
2008 SCC 10 0 1959 CanLII 78 0 
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The results from Table 23 are interesting for a few reasons.  It is quite apparent that the 

model has learned which cases are cited more often than others, which the baseline model did not 

learn.  Most of the top 10 predicted cases on average have a significant amount of true citations in 

the dataset, and the least predicted 10 cases are almost never cited in the dataset.  Is this truly a 

desirable quality for a predictive model?  Does this mean that the model is overfitting, and will 

never predict certain cases?  More often than not, it will predict cases that are cited frequently in 

the dataset.  The validity of the citation dataset is an underlying assumption of this research project, 

and the model is able to learn it better than the baseline.  As shown in Table 23, two of the top 

predicted citations do not have any citations in the dataset, so the model is not overfitting.  This 

means that the model is still considering textual information, and not learning solely from the 

citation information. 

It also appears that the model, although not given any context of time, is consistently 

predicting newer cases and disregarding old cases.  Some of the least predicted cases are from the 

1930’s, while most of the top predicted cases are newer than the 2000’s.  This may imply that the 

older cases use much different language, and that the model is interpreting this.  Alternatively, this 

could mean that the model is learning how legal professionals read and cite past cases, where 

typically older cases are seldom referenced.   

It should also be noted that this model was able to learn the training data extremely well, on 

a dual-core personal computer.  Of course, there is much room for optimization in this task, but 

the results from this model are extremely powerful and consistent.   

There is a possibility, however, that the underlying assumption is wrong.  This would mean 

that the dataset is not representative of relevancy in citations, and the collected data is not sufficient 

for this learning task.  As the size of the dataset increases in theory, the citations should be more 

representative of relevancy.  For this project, the number of training examples (downloaded FCA 

cases) were one tenth of the size of the prediction space (downloaded SCC cases).  This of course 

could mean that the collected data is not sufficient for learning. 

To address this, data augmentation techniques can be applied to create synthetic data, more 

training examples can be gathered from the FCA, or predictions from the SCC can be more 

selectively chosen.  In future research, these are all options that should be explored to ensure that 

the data is representative of what is being predicted.  The deep learning model proposed in this 

paper is capable of learning these representations, better than the simple baseline model. 
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6 Conclusion 

The purpose of this research is to ultimately show that AI is capable of learning the language 

of legal texts.  To motivate this, the task of predicting citations using only legal texts was chosen.  

The developed AI models outperformed traditional methods that do not consider language use and 

context, illustrating the ultimate hypothesis that AI can learn the language of the law. 

The decisions from two Canadian courts were used.  Specifically, 3,360 decisions were 

downloaded from the Canadian Federal Court of Appeal (FCA), and 11,354 decisions were 

downloaded from the Supreme Court of Canada (SCC).  These two courts were chosen because 

the FCA frequently cites decisions from the SCC, a desirable trait for this task.  This meant that 

the citation space would allow for more robust predictions. 

The downloaded predictions were cleaned and preprocessed, and ultimately the final dataset 

comprised of 1,588 FCA decisions and 9,744 SCC decisions.  The preprocessing involved 

reformatting the originally downloaded data, removing all possible forms of bias without removing 

too much information, and building a truth table that housed all citation information. 

This project proposes a new architecture for citation prediction tasks using texts.  The 

proposed method uses Doc2Vec embeddings of the FCA and SCC corpora as inputs.  The proposed 

deep learning model architecture involves 2 convolutional layers, and 3 linear layers.  As discussed 

above, the proposed model significantly outperforms the baseline model.  The proposed model is 

extremely efficient, and can be trained on most personal computers. 

These simple architectures were able to outperform the traditional baseline model, but they 

are not perfect.  There is room for much more optimization and experimentation with the 

architectures and learning techniques.  Also, the research project involves many assumptions that 

may have inadvertently affected the results of this experiment.  For instance, by using citation data 

as a proxy for relevant decisions, there is an underlying assumption that legal professionals cite 

cases optimally.  This implies reading through hundreds if not thousands of past decisions, and 

citing the most relevant ones.  Also, as discussed in the Literature Review, research has uncovered 

many different biases within the use of citations [37] [38] [39], which may have impacted the 

integrity of the truth table, and impacted the results of this set of experiments. 

Ultimately, the results from this research help demonstrate the initial hypothesis of the 

research project, that AI can learn the language of law.  This research will mark an important first 

step in the development of legal research, and lays the groundwork for much more experimentation 
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in the field.  In addition, it confirmed that there are various real applications to this research, 

including developing a recommendation system for citations that does not require any input or 

query from the user. 
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